S911 Calibration Kit

S911 Calibration Kit offers excellent performance characteristics that is specially designed for the fine-tuning and production environments and quality testing facilities using 50Ω 3.5 mm connectors from DC to 9 GHz.

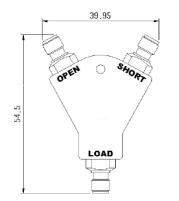
It includes all needed calibration standard (open, short, load) in one unit that is best solution for comfortable handing during the calibration of VNA, especially in field use.

Electrical Data

Impedance	50Ω	
Frequency range	DC to 9 GHz	

Electrical Specifications*

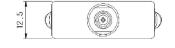
<u> </u>			
Load	DC - 9 GHz		
Return loss	≤38 dB		
Open	DC - 9 GHz		
Phase Deviation	<1.5°		
Short	DC - 9 GHz		
Phase Deviation <1.5°			


Mechanical Data

Connector type	3.5 mm (female)	
Housing	Stainless steel	
Weight	44 g	

Environmental Data

Operating temperature	15°C to 35°C	
Storage temperature	-40°C to +75°C	


^{*}Phase deviation: relative tolerance from standard phase

OPEN SHORT COPPER MOUNTAIN TECHNOLOGIS

Coefficients

Open	$C_0 = 49.43 \times 10^{-15} \text{F}$	
	$C_1 = -310.13 \times 10^{-27} \text{ F/Hz}$	
	$C_2 = 23.17 \times 10^{-36} \text{ F/Hz}^2$	
	$C_3 = -0.16 \times 10^{-45} \text{ F/Hz}^3$	
	Offset delay	29.243 ps
	Offset loss	2.2 GΩ/s
Short	$L_0 = 2.0765 \times 10^{-12} H$	
	$L_1 = -108.54 \times 10^{-24} \text{ H/Hz}$	
	$L_2 = 2.1705 \times 10^{-33} \text{ H/Hz}^2$	
	$L_3 = -0.01 \times 10^{-42} \text{ H/Hz}^3$	
	Offset delay	31.785 ps
	Offset loss	2.36 GΩ/s

